Skip to main content

Table 1 Overview of related literature

From: Development and multicentric external validation of a prognostic COVID-19 severity model based on thoracic CT

Publication

n

Methods

Input

Performance

Cai et al. [7]

99

random forest

automated lung and lesion segmentation, 40 clinical parameters

cv10 AUC = 0.96

Meng et al. [8]

366

CNN

CT, sex, age, severity grade, chronic disease status

test set AUC = 0.94

Ning et al. [9]

1521

DNN, CNN, logistic regression

CT, 130 clinical features

cv10 AUC = 0.86

Fu et al. [10]

64

SVM

CT-derived radiomics

leave-one-out AUC = 0.83

Li et al. [11]

217

CNN, logistic regression, SVM, decision tree, random forest

CT-derived radiomics

test set AUC = 0.86

Yue et al. [12]

52

logistic regression, random forest

CT-derived radiomics

independent test set AUC = 0.97

Wu et al. [13]

725

logistic regression

semi-automatically derived CT findings, 7 clinical features

independent test set AUC = 0.84 to 0.93

Fang et al. [14]

1040

CNN, RNN

CT, 61 clinical parameters

cv5 AUC = 0.92, domain adaptation AUC = 0.86

Wang et al. [15]

1051

CNN, DNN, random forest

CT, 15 clinical parameters

test set AUC = 0.81 to 0.83

Wang et al. [16]

188

logistic regression

CT-derived radiomics, 24 clinical parameters

test set AUC = 0.87

Revel et al. [17]

10735

logistic regression

manually-derived CT findings, 7 clinical parameters

AUC = 0.64

Lassau et al. [19]

1003

DNN

CT, 5 clinical parameters

test set AUC = 0.79

Shiri et al. [20]

14339

random forest

CT-derived radiomics

test set AUC = 0.83

Kienzle et al. [21]

2476

CNN

CT

test set F1 = 0.49

Duan et al. [23]

44

random forest

CT-derived radiomics

cv10 AUC = 0.99 to 1.00

  1. n: total number of patients, cvx: x-fold cross-validation, DNN: deep neural network, CNN: convolutional neural network, RNN: recurrent neural network, SVM: support vector machine