Skip to main content

Table 3 Performance on test sets using gait metrics from the accelerometer (in %)

From: Detecting cognitive impairment in cerebrovascular disease using gait, dual tasks, and machine learning

Condition

SS

DAn

DS1

DS7

F

DAn + SSa)

DS1 + SSb)

DS7 + SSc)

F + SSb)

Classifier

LR

LR

SVM

LR

LR

RF

LR

LR

RF

Feature Sel.

None

RF

None

None

None

RFE

RFE

KBest

KBest

Sampling

None

SMOTE

SMOTE

None

None

None

None

SMOTE

None

# Features

3.0 ± 0.0

2.0±0.0

3.0±0.0

3.0±0.0

3.0±0.0

2.0±0.0

4.6±1.0

4.5±1.0

3.4±1.7

Bal. Acc.

69.5

64.5

62.6

61.2

60.4

66.9

70.6

68.1

66.1

Sensitivity

72.4

64.3

58.6

51.7

62.1

75.0

69.0

65.5

79.3

Specificity

66.7

64.7

66.7

70.6

58.8

58.8

72.2

70.6

52.9

F1 score

75.0

69.2

65.4

61.2

66.7

75.0

74.1

71.7

76.7

AUC

66.3

65.5

65.7

57.4

63.1

63.4

75.5

66.5

57.8

  1. SS: Single-task; DAn: Walking while naming animals; DS1: Serial subtraction by 1s; DS7: Serial subtraction by 7s; F: Walking Fast; LR: Logistic Regression; RF: Random Forest; SVM: Support Vector Machine; RFE: Recursive feature elimination; AUC: Area under the curve. a) using dual-task costs; b) using dual-task costs (or capacity indexes) and SS metrics; c) using dual-task costs and dual-task metrics