Skip to main content

Table 5 Model comparison where gradient boosting was selected as the best fit

From: Understanding EMS response times: a machine learning-based analysis

Selected

Number Of Observations

Percentile

Predicted Average

ASE

Observed Average

SSE

Model

Yes

490,289

5

167.80

1690.09

172.90

828634299.32

Training: Gradient boosting

Yes

245,144

5

168.22

1789.91

169.40

438785173.01

Validation: Gradient boosting

Yes

81,715

5

167.29

1769.54

170.06

144598368.52

Test: Gradient boosting

No

490,289

5

168.66

1307.06

194.87

640835098.42

Training: Forest

No

245,144

5

166.32

1796.18

168.69

440322314.81

Validation: Forest

No

81,715

5

165.52

1786.66

169.21

145997039.91

Test: Forest

No

222,482

5

167.41

1788.88

169.01

397994152.56

Training: Neural network

No

110,779

5

168.11

1861.60

166.61

206226675.73

Validation: Neural network

No

37,213

5

168.51

1832.01

166.76

68174404.09

Test: Neural network

No

222,482

5

129.17

2116.45

158.05

470871881.72

Training: Linear regression

No

110,787

5

129.46

2138.34

157.61

236900262.60

Validation: Linear regression

No

37,214

5

129.65

2127.13

157.27

79158981.29

Test: Linear regression