Skip to main content

Table 4 Summary of studies that evaluated factors and scoring system in predicting endoscopic intervention and outcome in UGIB

From: Development and validation of a machine learning model to predict hemostatic intervention in patients with acute upper gastrointestinal bleeding

Author (year)

Factors/model

Country

No. of factors

Derivative N

(validation N)

Data collection

Intervention (%)

AUC

Model

AUC

GBS

Limitation

Lee CH [31]

Hematemesis, INR

Korea

2

270 (N/A)

2013–2017

59.0

N/A

N/A

OR 2.0–2.5

Kim SS [32]

Hb, bloody NG

Korea

2

613 (N/A)

2009–2013

53.7

N/A

N/A

OR 2.68, P < 0.001

Redondo CE [34]

MAP(ASH)

Spain

6

547 (3012)

2013–2017

40.8

0.61

(0.69)*

0.75

Fair performance

Veisman I [30]

Machine learning model

Israel

25

883 (N/A)

2012–2018

16.4

0.68

0.64

 

Ito N [35]

Nagoya University Score

Japan

4

509 (160)

2016–2018

34.0

0.78

0.62

Exclude variceal bleeding

Sasaki Y [36]

H3B2 score

Japan

5

675 (N/A)

2015–2019

34.5

0.73

0.72

Exclude variceal bleeding

Marks I [37]

London Hemostat Score

UK

6

466 (404)

2015–2020

25.0

0.82

(0.8)*

0.72

Need calculation of positive and negative score

Acehan F [33]

Syncope, MAP, BUN

Türkiye

3

406 (N/A)

2019–2022

30.3

0.65

0.60

Exclude variceal bleeding

  1. *AUC model of the validation set