Skip to main content

Table 7 Comparison of the proposed network-level fusion architecture with SOTA pre-trained models based on the accuracy of the selected datasets of this work

From: A novel network-level fused deep learning architecture with shallow neural network classifier for gastrointestinal cancer classification from wireless capsule endoscopy images

Network

Kvasir V1 (%)

Kvasir VII (%)

Parameters (M)

Parameter memory (PM)

Proposed

99.60

95.10

14.7

51 MB

Inception V3

96.40

92.86

23.9

91 MB

DenseNet201

95.10

93.04

20.0

77 MB

Resnet18

94.50

91.28

11.7

45 MB

Resnet50

94.86

90.20

25.5

98 MB

Resnet101

92.36

90.14

44.6

171 MB

Xception

94.90

93.68

22.9

88 MB

NasnetLarge

95.60

93.60

88.9

340 MB