Skip to main content

Table 9 Comparison with state-of-the-art methods

From: Risk prediction of hyperuricemia based on particle swarm fusion machine learning solely dependent on routine blood tests

Papers

Feature optimization

Number of features

Classifier

Accuracy

AUC

XAI

Hou et al. [4]

Lr analysis

15

SVM

0.819

0.875

No

Zheng et al. [27]

LASSO

6

XGBoost

0.881

0.733

No

Zeng et al. [28]

Lr analysis

14

ANN

0.800

0.814

No

Ma [9]

Lr analysis

10

Bayesian

-

0.740

No

Yang [11]

LASSO

4

Lr

0.726

0.813

No

Chen et al. [49]

-

14

XGBoost

0.730

0.820

No

Gao et al. [5]

-

21

Rf

-

0.739(male)

No

     

0.818(Female)

 

Proposed model

Lr analysis

7

Stacking

0.978

0.978

Yes