Skip to main content

Table 6 Performance comparison of optimization algorithms applied to XGBoost

From: Risk prediction of hyperuricemia based on particle swarm fusion machine learning solely dependent on routine blood tests

optimization

Auc

Acc

P

R

F1

parameters

PSO

0.997

0.973

0.975

0.971

0.973

n_particles = 10,c1 = 0.5,c2 = 0.3,w = 0.9,max_iters = 100

GridSearch

0.997

0.972

0.970

0.976

0.976

scoring = f1,cv = 5,n_jobs = − 1,verbose = 1

GA

0.996

0.969

0.969

0.968

0.968

n = 10,max_gen = 100,pc = 0.7,pm = 0.2