Skip to main content

Table 5 Performance comparison of five machine learning models with data balancing technology

From: Risk prediction of hyperuricemia based on particle swarm fusion machine learning solely dependent on routine blood tests

Models

Auc

Acc

P

R

F1

LR + smote

0.855

0.777

0.743

0.846

0.791

LR + adasyn

0.844

0.742

0.678

0.922

0.781

SVM + smote

0.972

0.921

0.921

0.921

0.921

SVM + adasyn

0.975

0.927

0.914

0.943

0.928

RF + smote

0.984

0.934

0.927

0.941

0.935

RF + adasyn

0.982

0.933

0.929

0.937

0.932

DNN + smote

0.958

0.958

0.947

0.969

0.954

DNN + adasyn

0.938

0.938

0.917

0.963

0.960

XGBoost + smote

0.997

0.973

0.975

0.971

0.973

XGBoost + adasyn

0.995

0.972

0.986

0.957

0.971