Skip to main content

Table 4 Accuracy of each model for 10 folds

From: Risk prediction of hyperuricemia based on particle swarm fusion machine learning solely dependent on routine blood tests

Models

Fold1

Fold2

Fold3

Fold4

Fold5

Fold6

Fold7

Fold8

Fold9

Fold10

Lr + smote

0.761

0.757

0.779

0.759

0.739

0.764

0.789

0.776

0.773

0.740

lr + adasyn

0.759

0.759

0.745

0.754

0.750

0.746

0.756

0.764

0.760

0.748

Svm + smote

0.916

0.934

0.918

0.900

0.895

0.928

0.936

0.927

0.909

0.922

Svm + adasyn

0.934

0.924

0.912

0.941

0.922

0.932

0.926

0.934

0.926

0.927

Rf + smote

0.927

0.919

0.923

0.921

0.913

0.923

0.942

0.935

0.934

0.912

Rf + adasyn

0.923

0.940

0.935

0.943

0.934

0.942

0.937

0.930

0.924

0.922

Xgboost + smote

0.962

0.974

0.969

0.964

0.951

0.967

0.969

0.964

0.970

0.962

Xgboost + adasyn

0.969

0.974

0.975

0.974

0.970

0.971

0.969

0.966

0.971

0.975

Dnn + smote

0.901

0.967

0.965

0.956

0.968

0.976

0.968

0.986

0.976

0.981

Dnn + adasyn

0.918

0.965

0.964

0.970

0.968

0.979

0.984

0.986

0.991

0.984