Skip to main content

Table 3 Multivariate logistic regression analysis of hyperuricemia

From: Risk prediction of hyperuricemia based on particle swarm fusion machine learning solely dependent on routine blood tests

Indicators

Coef

Std_err

Z

P

95%CI

CONST

4.868

6.625

0.735

0.462

[−8.117 17.854]

HGB

−0.003

0.006

−0.416

0.677

[−0.015 0.010]

LYM

−0.133

0.069

−1.934

0.053

[−0.269 0.002]

NEUT%

−0.155

0.074

−2.093

0.036

[−0.299 − 0.010]

ANC

0.477

0.126

3.782

0.000

[0.230 0.724]

MONO#

−1.804

1.144

−1.577

0.115

[−4.047 0.438]

BASO#

−0.454

3.439

−0.132

0.895

[−7.194 6.286]

EOS#

−1.724

1.126

−1.532

0.126

[−3.930 0.482]

RDW-CV

0.021

0.007

3.059

0.002

[0.008 0.035]

AGE

0.037

0.008

4.640

0.000

[0.021 0.052]

SEX

−0.428

0.238

−1.799

0.072

[−0.894 0.038]

WEIGHT

0.031

0.007

4.425

0.000

[0.017 0.045]