From: NLP modeling recommendations for restricted data availability in clinical settings
Model & paradigm | Prioritization | Specialty | NER |
---|---|---|---|
xlm-roberta | |||
Fine-tune & predict | 88.85 % | 51.71 % | 11.09 % |
Cont. pre-train., fine-tune & pred. | 89.03 % (+0.18) | 52.36 % (+0.65) | 13.85 % (+2.76) |
roberta-bne | |||
Fine-tune & predict | 88.58 % | 52.50 % | 22.59 % |
Cont. pre-train., fine-tune & pred. | 88.80 % (+0.22) | 51.65 % (−0.85) | 23.29 % (+0.70) |
roberta-biomedical-clinical | |||
Fine-tune & predict | 88.80 % | 53.79 % | 34.46 % |
Cont. pre-train., fine-tune & pred. | 88.85 % (+0.05) | 53.85 % (+0.06) | 37.25 % (+2.79) |
Llama 2 | |||
Prompt & predict (Zero-shot) | 6.49 % | 31.41 % | 5.31 % |
Prompt & predict (Few-shot) | 56.70 % (+50.21) | 31.91 % (+0.50) | 15.44 % (+10.13) |
Llama 3 | |||
Prompt & predict (Zero-shot) | 36.87 % | 38.49 % | 17.59 % |
Prompt & predict (Few-shot) | 47.64 % (+10.77) | 48.50 % (+10.01) | 23.14 % (+5.55) |