Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Table 1 Patient information for 9 patients

From: Can some algorithms of machine learning identify osteoporosis patients after training and testing some clinical information about patients?

 

Patient’s number

Categories

1

2

3

4

5

6

7

8

9

Diagnosis

Y

Y

N

Y

N

Y

N

N

Y

Sex

F

F

F

F

F

F

M

M

F

Age, year

76

74

66

70

51

77

55

58

88

Height, cm

160

155

158

159

160

160

174

175

155

Weight, kg

65

55

56.5

60

70

55

85

80

55

Body mass index

23.44

22.89

22.63

23.73

27.34

21.48

28.08

26.12

22.89

Smoking

N

N

N

N

N

N

N

N

N

Hypertension

N

N

Y

N

Y

Y

N

N

Y

diabetes

N

N

Y

N

N

N

Y

N

N

Trauma

N

N

N

Y

N

Y

N

Y

Y

History of osteoporosis

N

N

N

Y

N

Y

N

Y

Y

Alkaline phosphatase, U/L

65

193

46

71

50

58

60

99

72

Calcium, mmol/L

2.2

2.21

2.06

2.08

2.19

3.24

2.15

2.21

2.25

Phosphorus, mmol/L

0.91

0.94

0.96

0.93

0.92

1.16

0.72

1.12

0.82

Proteinuria

-

-

-

-

-

-

-

-

+

Osteocalcin, ng/ml

9.49

22.77

ND

ND

ND

27.06

ND

ND

10.14

  1. Note: N, no; Y, yes; -, negative; +, positive; ND, not done