Skip to main content

Table 3 Comparison with state-of-the-art ASCVD prediction using NHANES data

From: An interpretable machine learning model with demographic variables and dietary patterns for ASCVD identification: from U.S. NHANES 1999–2018

Researches

Purpose

Features

Sample size

Algorithms

AUC

Year of publication

Chen et al. [22]

Identify chronic heart disease

20 variables

14,971

support vector machine

(SVM)

0.898

2023

Inoue et al. [23]

Predict low HbA1c levels and all-cause or cardiovascular mortality

72 variables

39,453

SuperLearner

0.90

2020

Li et al. [24]

Heavy metals’ exposure to identify coronary heart disease

13 heavy metals

12,554

random forest (RF)

0.827

2023

Martin-Morales et al. [25]

Predict cardiovascular disease mortality

59 variables

9,706

RF

0.88

2023

Wang et al. [26]

Predict coronary heart disease risk in patients with periodontitis

29 variables

3,245

K-nearest neighbor

0.977

2023