Skip to main content

Table 2 Shows the performance (mean of ten-fold cross-validation) for each performance parameter with 95% confidence intervals based on the LOS class

From: An interpretable machine learning model with demographic variables and dietary patterns for ASCVD identification: from U.S. NHANES 1999–2018

Classifiers

Accuracy

[95% Cl]

Precision

[95% Cl]

Recall

[95% Cl]

F1-Score

[95% Cl]

AUC

[95% Cl]

LR

0.8952 (0.8948, 0.8956)

0.8356 (0.8298, 0.8414)

0.8952 (0.8948, 0.8956)

0.8477 (0.8474, 0.8481)

0.8088 (0.8020, 0.8157)

ANNs

0.8240 (0.8182, 0.8299)

0.8718 (0.8695, 0.8741)

0.8240 (0.8182, 0.8299)

0.8434 (0.8400, 0.8468)

0.8135 (0.8082, 0.8188)

SVM

0.8216 (0.8154, 0.8277)

0.8721 (0.8701, 0.8742)

0.8216 (0.8154, 0.8277)

0.8419 (0.8376, 0.8463)

0.8111 (0.8058, 0.8165)

RF

0.8863 (0.8837, 0.8889)

0.8487 (0.8450, 0.8523)

0.8863 (0.8837, 0.8889)

0.8601 (0.8578, 0.8623)

0.8075 (0.8037, 0.8114)

XGBoost

0.8841 (0.8831, 0.8852)

0.8590 (0.8584, 0.8596)

0.8841 (0.8831, 0.8852)

0.8631(0.8616, 0.8646)

0.8143 (0.8094, 0.8191)