AUROC | Accuracy | Precision | Recall | F1-score | |
---|---|---|---|---|---|
Logistic Regression | 0.74 (0.71—0.77) | 0.67 (0.64, 0.69) | 0.31 (0.28, 0.35) | 0.70 (0.64, 0.74) | 0.43 (0.39, 0.47) |
Random Forest | 0.71 (0.68—0.74) | 0.72 (0.70, 0.74) | 0.34 (0.30, 0.38) | 0.60 (0.55, 0.66) | 0.44 (0.40, 0.48) |
XGBoost | 0.72 (0.69—0.75) | 0.82 (0.80, 0.84) | 0.65 (0.37, 0.91) | 0.03 (0.01, 0.05) | 0.06 (0.03, 0.10) |
Neural Network | 0.72 (0.68—0.75) | 0.82 (0.81, 0.84) | 0.65 (0.47, 0.83) | 0.06 (0.04, 0.09) | 0.11 (0.07, 0.16) |