Skip to main content

Table 3 Quantitative impact of risk-based approach. Differences of expected risk \(\:\stackrel{\sim}{ER}\) when varying the risk ratio \(\:{c}_{FN}\) systematically between \(\:1.0={2}^{0}\) and \(\:16={2}^{4}\) (stepwise increment by factor 2) as well as \(\:{c}_{FN}=10.0\) as an extra point of evaluation. Due to symmetry reasons, the values for \(\:{c}_{FN}<1.0\) are equivalent to the inverse risk ratio \(\:\frac{1}{{c}_{FN}}\). The rightmost column shows the relative differences between \(\:\stackrel{\sim}{ER}\left({s}_{{c}_{FN}}\right)\), i.e. the value at the optimum position \(\:{s}_{{c}_{FN}}\) for the particular curve, and \(\:\stackrel{\sim}{ER}\left({s}_{1.0}\right),\) i.e. the value at the default threshold \(\:{s}_{1.0}\)

From: Risk-based evaluation of machine learning-based classification methods used for medical devices

Parameter settings of artificial model / risk ratio

Optimum threshold \(\:{\varvec{s}}_{{\varvec{c}}_{\varvec{F}\varvec{N}}}\) and corresponding \(\varvec{\:\stackrel{\sim}{{E}{R}}}\) value

Comparison of \(\varvec{\:\stackrel{\sim}{{E}{R}}}\) values:

\(\:{\varvec{s}}_{{\varvec{c}}_{\varvec{F}\varvec{N}}}\) vs. default threshold \(\varvec{\:{\varvec{s}}_{1.0}}\)

modified Gaussian

\(\varvec{\:{{\sigma\:}}_{{F}{P}}\:/\:{{\sigma\:}}_{{F}{N}}}\)

risk ratio / weight

\(\varvec{\:{c}_{FN}\:/\:{c}}\)

optimum threshold

\(\varvec{\:{s}_{{c}_{FN}}}\)

expected risk value

relative difference

\(\varvec{\:\frac{\stackrel{\sim}{ER}\left({s}_{1.0}\right)}{\stackrel{\sim}{ER}\left({s}_{{c}_{FN}}\right)}}\)

at \(\varvec{\:{s}_{{c}_{FN}}}\):

\(\varvec{\:\stackrel{\sim}{ER}\left({s}_{{c}_{FN}}\right)}\)

at \(\varvec{\:{s}_{1.0}}\):

\(\varvec{\:\stackrel{\sim}{ER}\left({s}_{1.0}\right)}\)

\(\:{{\sigma\:}}_{{F}{P}}=0.1,\) \(\:{{\sigma\:}}_{{F}{N}}=0.1\)

1.0

(default)

0.5

(default)

0.08

0.08

1.0

2.0

0.46

0.11

0.12

1.07

4.0

0.44

0.16

0.21

1.30

8.0

0.40

0.21

0.37

1.77

10.0

0.38

0.23

0.45

1.98

16.0

0.36

0.27

0.70

2.58

\(\:{{\sigma\:}}_{{F}{P}}=0.2,\) \(\:{{\sigma\:}}_{{F}{N}}=0.2\)

1.0

(default)

0.5

(default)

0.29

0.29

1.0

2.0

0.44

0.40

0.43

1.08

4.0

0.36

0.52

0.72

1.38

8.0

0.3

0.65

1.29

1.97

10.0

0.26

0.70

1.58

2.26

16.0

0.22

0.78

2.44

3.12

\(\:{{\sigma\:}}_{{F}{P}}=0.3,\) \(\:{{\sigma\:}}_{{F}{N}}=0.3\)

1.0

(default)

0.5

(default)

0.43

0.43

1.0

2.0

0.4

0.59

0.65

1.10

4.0

0.3

0.75

1.09

1.44

8.0

0.18

0.89

1.96

2.20

10.0

0.16

0.92

2.39

2.59

16.0

0.08

0.98

3.69

3.78

\(\:{{\sigma\:}}_{{F}{P}}=0.4,\) \(\:{{\sigma\:}}_{{F}{N}}=0.4\)

1.0

(default)

0.5

(default)

0.54

0.54

1.0

2.0

0.36

0.72

0.80

1.11

4.0

0.22

0.88

1.34

1.51

8.0

0.08

0.98

2.41

2.45

10.0

0.04

1.00

2.94

2.96

16.0

0.00

1.00

4.55

4.55