From: Presenting a prediction model for HELLP syndrome through data mining
Classifier | Accuracy | Precision | Sensitivity | Specificity | F1-score | AUC |
---|---|---|---|---|---|---|
DL | 0.993 | 0.987 | 1 | 0.986 | 0.993 | 1 |
MLP | 0.988 | 0.979 | 0.997 | 0.979 | 0.988 | 1 |
DT | 0.720 | 0.646 | 0.978 | 0.463 | 0.777 | 0.725 |
SVM | 0.908 | 0.888 | 0.933 | 0.884 | 0.909 | 0.971 |
KNN | 0.973 | 0.950 | 1 | 0.946 | 0.974 | 0.991 |
RF | 0.959 | 0.951 | 0.965 | 0.953 | 0.957 | 0.992 |
Adaboost | 0.992 | 0.989 | 0.994 | 0.989 | 0.991 | 1 |
xgboost | 0.969 | 0.988 | 0.970 | 0.965 | 0.979 | 0.992 |
LR | 0.960 | 0.975 | 0.970 | 0.933 | 0.973 | 0.989 |