Model | Thresholds | AUC | Accuracy | Precision | Sensitivity | Specificity | F1-score |
---|---|---|---|---|---|---|---|
The thresholds of 0.5 | |||||||
 LR | 0.5 | 0.834 | 0.749 | 0.722 | 0.825 | 0.671 | 0.671 |
 NB | 0.5 | 0.836 | 0.709 | 0.897 | 0.485 | 0.942 | 0.942 |
 KNN | 0.5 | 0.809 | 0.759 | 0.834 | 0.657 | 0.864 | 0.864 |
 SVM | 0.5 | 0.881 | 0.808 | 0.804 | 0.825 | 0.791 | 0.791 |
 RF | 0.5 | 0.907 | 0.838 | 0.830 | 0.858 | 0.818 | 0.818 |
 MLP | 0.5 | 0.864 | 0.785 | 0.786 | 0.795 | 0.775 | 0.775 |
 GBDT | 0.5 | 0.913 | 0.831 | 0.823 | 0.851 | 0.810 | 0.810 |
 ANN | 0.5 | 0.906 | 0.857 | 0.881 | 0.832 | 0.884 | 0.884 |
The threshold for the best optimal ROC Youden index | |||||||
 LR | 0.602 | 0.834 | 0.760 | 0.786 | 0.728 | 0.795 | 0.795 |
 NB | 0.000 | 0.836 | 0.760 | 0.848 | 0.646 | 0.880 | 0.880 |
 KNN | 1.000 | 0.809 | 0.490 | / | 0.000 | 1.000 | 1.000 |
 SVM | 0.646 | 0.881 | 0.821 | 0.869 | 0.765 | 0.880 | 0.880 |
 RF | 0.440 | 0.907 | 0.842 | 0.818 | 0.888 | 0.795 | 0.795 |
 MLP | 0.515 | 0.864 | 0.789 | 0.794 | 0.791 | 0.787 | 0.787 |
 GBDT | 0.614 | 0.913 | 0.840 | 0.857 | 0.825 | 0.857 | 0.857 |
 ANN | 0.522 | 0.906 | 0.857 | 0.891 | 0.821 | 0.895 | 0.895 |
The threshold for the best optimal precision-recall | |||||||
 LR | 0.446 | 0.834 | 0.749 | 0.705 | 0.873 | 0.620 | 0.620 |
 NB | 0.000 | 0.836 | 0.757 | 0.713 | 0.873 | 0.636 | 0.636 |
 KNN | 0.500 | 0.809 | 0.759 | 0.834 | 0.657 | 0.864 | 0.864 |
 SVM | 0.615 | 0.881 | 0.821 | 0.851 | 0.787 | 0.857 | 0.857 |
 RF | 0.440 | 0.907 | 0.842 | 0.818 | 0.888 | 0.795 | 0.795 |
 MLP | 0.232 | 0.864 | 0.722 | 0.658 | 0.948 | 0.488 | 0.488 |
 GBDT | 0.226 | 0.913 | 0.835 | 0.785 | 0.929 | 0.736 | 0.736 |
 ANN | 0.522 | 0.906 | 0.857 | 0.891 | 0.821 | 0.895 | 0.895 |