Skip to main content

Table 2 The performance measures evaluated for different ML and AI methods for screening malignant haematological diseases use different thresholds found in the validation set

From: A novel method for screening malignant hematological diseases by constructing an optimal machine learning model based on blood cell parameters

Model

Thresholds

AUC

Accuracy

Precision

Sensitivity

Specificity

F1-score

The thresholds of 0.5

 LR

0.5

0.834

0.749

0.722

0.825

0.671

0.671

 NB

0.5

0.836

0.709

0.897

0.485

0.942

0.942

 KNN

0.5

0.809

0.759

0.834

0.657

0.864

0.864

 SVM

0.5

0.881

0.808

0.804

0.825

0.791

0.791

 RF

0.5

0.907

0.838

0.830

0.858

0.818

0.818

 MLP

0.5

0.864

0.785

0.786

0.795

0.775

0.775

 GBDT

0.5

0.913

0.831

0.823

0.851

0.810

0.810

 ANN

0.5

0.906

0.857

0.881

0.832

0.884

0.884

The threshold for the best optimal ROC Youden index

 LR

0.602

0.834

0.760

0.786

0.728

0.795

0.795

 NB

0.000

0.836

0.760

0.848

0.646

0.880

0.880

 KNN

1.000

0.809

0.490

/

0.000

1.000

1.000

 SVM

0.646

0.881

0.821

0.869

0.765

0.880

0.880

 RF

0.440

0.907

0.842

0.818

0.888

0.795

0.795

 MLP

0.515

0.864

0.789

0.794

0.791

0.787

0.787

 GBDT

0.614

0.913

0.840

0.857

0.825

0.857

0.857

 ANN

0.522

0.906

0.857

0.891

0.821

0.895

0.895

The threshold for the best optimal precision-recall

 LR

0.446

0.834

0.749

0.705

0.873

0.620

0.620

 NB

0.000

0.836

0.757

0.713

0.873

0.636

0.636

 KNN

0.500

0.809

0.759

0.834

0.657

0.864

0.864

 SVM

0.615

0.881

0.821

0.851

0.787

0.857

0.857

 RF

0.440

0.907

0.842

0.818

0.888

0.795

0.795

 MLP

0.232

0.864

0.722

0.658

0.948

0.488

0.488

 GBDT

0.226

0.913

0.835

0.785

0.929

0.736

0.736

 ANN

0.522

0.906

0.857

0.891

0.821

0.895

0.895