From: Towards unbiased skin cancer classification using deep feature fusion
Name of layer | Kernel size and stride | Activations |
---|---|---|
Input layer |  | 224×224×3 |
Conv1, BN1, ReLU1 | Conv1: Kernel size=3×3 | 224×224×32 |
Conv2, BN2, ReLU2 | Conv2: Kernel size=3×3, stride=1 | 224×224×32 |
Conv3, BN3, ReLU3 | Conv3: Kernel size=3×3, stride=2 | 112×112×32 |
Conv4, BN4, ReLU4 | Conv4: Kernel size=3×3, stride=1 | 224×224×32 |
Conv5, BN5, ReLU5 | Conv5: Kernel size=3×3, stride=2 | 112×112×32 |
Conv6, BN6, ReLU6 | Conv6: Kernel size=3×3, stride=1 | 224×224×32 |
Conv7, BN7, ReLU7 | Conv7: Kernel size=3×3, stride=2 | 112×112×32 |
Conv8, BN8, ReLU8 | Conv8: Kernel size=3×3, stride=1 | 224×224×32 |
Conv9, BN9, ReLU9 | Conv9: Kernel size=3×3, stride=2 | 112×112×32 |
Concat1, BNConcat1 | Concatenation of four inputs | 112×112×128 |
Conv10,BN10,ReLU10 | Conv10: Kernel size=3×3, stride=1 | 112×112×64 |
Conv11, BN11, ReLU11 | Conv11: Kernel size=3×3, stride=2 | 56×56×64 |
Conv12, BN12, ReLU12 | Conv12: Kernel size=3×3, stride=1 | 112×112×64 |
Conv13, BN13, ReLU13 | Conv13: Kernel size=3×3, stride=2 | 56×56×64 |
Conv14, BN14, ReLU14 | Conv14: Kernel size=3×3, stride=1 | 112×112×64 |
Conv15, BN15, ReLU15 | Conv15: Kernel size=3×3, stride=2 | 56×56×64 |
Conv16, BN16, ReLU16 | Conv16: Kernel size=3×3, stride=1 | 112×112×64 |
Conv17, BN17, ReLU17 | Conv17: Kernel size=3×3, stride=2 | 56×56×64 |
Concat2, BNConcat2 | Concatenation of four inputs | 56×56×64 |
Conv18, BN18, ReLU18 | Conv18: Kernel size=3×3, stride=1 | 56×56×64 |
Conv19, BN19, ReLU19 | Conv19: Kernel size=3×3, stride=2 | 28×28×128 |
Conv20, BN20, ReLU20 | Conv20: Kernel size=3×3, stride=1 | 56×56×128 |
Conv21, BN21, ReLU21 | Conv21: Kernel size=3×3, stride=2 | 28×28×128 |
Conv22, BN22, ReLU22 | Conv22: Kernel size=3×3, stride=1 | 56×56×128 |
Conv23, BN23, ReLU23 | Conv23: Kernel size=3×3, stride=2 | 28×28×128 |
Conv24, BN24, ReLU24 | Conv24: Kernel size=3×3, stride=1 | 56×56×128 |
Conv25, BN25, ReLU25 | Conv25: Kernel size=3×3, stride=2 | 28×28×128 |
Concat3, BNConcat3 | Concatenation of four inputs | 28×28×512 |
Conv26, BN26, ReLU26 | Conv26: Kernel size=3×3, stride=1 | 28×28×256 |
Conv27, BN27, ReLU27 | Conv27: Kernel size=3×3, stride=2 | 14×14×256 |
Conv28, BN28, ReLU28 | Conv28: Kernel size=3×3, stride=1 | 28×28×256 |
Conv29, BN29, ReLU29 | Conv29: Kernel size=3×3, stride=2 | 14×14×256 |
Conv30, BN30, ReLU30 | Conv30: Kernel size=3×3, stride=1 | 28×28×256 |
Conv31, BN31, ReLU31 | Conv31: Kernel size=3×3, stride=2 | 14×14×256 |
Conv32, BN32, ReLU32 | Conv32: Kernel size=3×3, stride=1 | 28×28×256 |
Conv33, BN33, ReLU33 | Conv33: Kernel size=3×3, stride=2 | 14×14×256 |
Concat4, BNConcat4 | Concatenation of four inputs | 14×14×1024 |
Average polling layer |  | 1×1×1024 |
Fc1 | 300 fully connected | 1×1×300 |
Drop1 | Dropout layer with learning rate:0.5 | 1×1×300 |
Fc2 | 64 fully connected | 1×1×64 |
Drop2 | Dropout layer with learning rate:0.5 | 1×1×300 |
Fc3 (Softmax layer) | 0= Benign, 1= Malignant | 1×1×2 |