Skip to main content

Table 4 Comparisons of six machine learning classifiers

From: Unlocking the link: predicting cardiovascular disease risk with a focus on airflow obstruction using machine learning

 

Accuracy

Precision

Recall

F1 Score

Brier Score

Train set

Test set

Train set

Test set

Train set

Test set

Train set

Test set

Train set

Test set

Full Population CVD Diagnostic Model

XGBoost

0.7157

0.6665

0.6969

0.2524

0.7634

0.7062

0.7286

0.3719

0.1911

0.2012

Random Forest

0.6928

0.6433

0.6709

0.2408

0.7570

0.7211

0.7113

0.3611

0.2067

0.2110

KNN

1.0000

0.7350

1.0000

0.2245

1.0000

0.3650

1.0000

0.2780

0. 0000

0.2172

Naive Bayes

0.6709

0.6591

0.6650

0.2508

0.6888

0.7240

0.6767

0.3725

0. 2118

0.2107

Catboost

0.7581

0.6765

0.7314

0.2525

0.8159

0.6706

0.7713

0.3669

0.1720

0.1950

LightGBM

0.7166

0.6653

0.6967

0.2495

0.7674

0.6944

0.7303

0.3671

0.1883

0.2013

Airflow Obstruction Population CVD Diagnostic Model

XGBoost

0.7671

0.6539

0.7521

0.3085

0.7968

0.5321

0.7738

0.3906

0.1608

0.2162

Random Forest

0.9831

0.6902

0.9672

0.2977

1.000

0.3578

0.9833

0.3250

0.0189

0.1983

MLP

0.9468

0.6539

0.9367

0.2750

0.9584

0.4037

0.9474

0.3271

0.0417

0.2930

KNN

1.0000

0.6252

1.0000

0.2570

1.0000

0.4220

1.0000

0.3194

0.0000

0.2840

Naive Bayes

0.6786

0.5698

0.6368

0.2929

0.8313

0.7523

0.7211

0.4216

0.2106

0.2643

LightGBM

0.7748

0.6444

0.7582

0.2941

0.8069

0.5046

0.7818

0.3716

0.1587

0.2189

  1. Abbreviations: XGBoost, eXtreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; KNN, K-Nearest Neighbor; MLP, Multi-Layer Perceptron; CatBoost, Categorical Boosting