Skip to main content

Table 11 Comparison of findings based on the Bonn and New Delhi dataset

From: A hybrid CNN-Bi-LSTM model with feature fusion for accurate epilepsy seizure detection

Reference

Year

Strategies

Case

Accuracy (%)

[58]

2018

EMD + Hilbert Transform + SVM

A-D-E

AB-CD-E

85.00

83.00

[59]

2021

Cov–Det + KST-MWUT + AB–BP–NN

C-E

D-E

AB-E

CD-E

ACD-E

ABCD-E

98.50

99.00

98.00

98.20

98.00

98.50

[35]

2021

TQWT + (Statistical + Frequency + 

Fractal and Entropy Features) + CNN–RNN

C-E

D-E

99.51

99.82

[60]

2022

DWT + InfoGain and Variance + FRNN

C-E

D-E

CD-E

99.67

99.50

98.00

[41]

2023

DWT + Entropy Features + RF + CNN

A-E

B-E

AD-E

BD-E

ABC-E

ABD-E

BCD-E

Interictal-Ictal

Preictal-Ictal

Non-ictal-Ictal

99.30

98.10

99.28

97.46

98.95

97.30

97.65

100.00

97.33

98.33

[45]

2023

CNN-LSTM

C-E

D-E

AB-E

CD-E

ABCD-E

98.20

97.60

98.30

97.90

98.70

[61]

2024

TCN-SA

A-E

B-E

97.37

93.50

Proposed Method

2024

DWT + (Time domain + Non-linear Features) + SVM-REF + CNN-Bi-LSTM

A-E

B-E

C-E

D-E

AB-E

AC-E

AD-E

BC-E

BD-E

CD-E

ABC-E

ABD-E

ACD-E

BCD-E

ABCD-E

A-D-E

AB-CD-E

Interictal-Ictal

Preictal-Ictal

Non-ictal-Ictal

99.50

98.17

99.75

100.00

98.60

99.33

99.61

98.28

97.94

99.11

99.08

98.17

99.50

98.08

98.93

96.19

95.71

100.00

98.83

99.67