Reference | Technique/ Model used | Number of Images/ Dataset | Number of Classes | Performance Measures | |
---|---|---|---|---|---|
Accuracy % | Other Parameters | ||||
[7]/2022 | Deep Learning | 120/Patient Data | 2 | 82 | Recall 72.7% Specificity 72.9% AUC 0.755 |
[18]/2023 | VGG16 | 723/Nail Disease Dataset | 3 | 94 | - |
[19]/2022 | Ensemble of CNNs | 185/Patient Data | 2 | 95 | Precision – 94% |
[20] /2022 | UNet | 723/Nail Disease Dataset | 2 | 86.49 | - |
[21]/2024 | CNN MobileNetV2 | 1159/Nail Disease image dataset | 8 | 97 | - |
Proposed Hybrid Capsule CNN Model | 3835/Nail Disease Detection Dataset | 6 | 99.25 | Precision – 97.35% Recall – 96.79% F-1 Score – 97.07% |