Technique | Hyperparameter | Options to configure |
---|---|---|
PSO-FCM | Initial population | 50, 100 ,150 , 200, 250, 300 |
Activation function | Sigmoid, tanh | |
Inference function | Standard-Kosko, Modified-Kosko, Rescaled | |
ANN (MLP) | Hidden units | 16, 32, 64, 128, 256 |
Learning rate | 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5 | |
Activation function | Tanh, ReLU | |
Optimizer | Stochastic gradient descent, Adam | |
Type of learning | Constant, adaptive | |
SVM | Kernel | Lineal, radial, sigmoid |
C | 0.0001, 0.001, 0.01, 0.1, 1.0, 10, 100, 1000 | |
Gamma | 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000 | |
XGBoost | Predictors choose at random | Random values between 1 and 20 |
Number of trees | 10, 100, 1000 | |
Minimun node size | 2, 5, 7, 11, 15, 20, 25, 30 | |
Depth of trees | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 | |
Learning rate | Random values between 0 and 1 | |
Minimum loss reduction | Random values between 0 and 0.01 | |
Percentage of sample | Random values between 0 and 1 |