Skip to main content

Table 2 Performance metrics for different data models

From: Integrating structured and unstructured data for predicting emergency severity: an association and predictive study using transformer-based natural language processing models

 

Cutoff

AUC

Accuracy

Precision

Sensitivity

Specificity

F1 Score

Logistic Regression

 Structured Data

0.744

0.704

0.635

0.847

0.623

0.668

0.718

 Unstructured Data

0.783

0.760

0.696

0.882

0.685

0.730

0.771

 Combined (Structured + Unstructured)

0.779

0.784

0.717

0.894

0.705

0.753

0.788

 Mean (Structured + Unstructured)

0.735

0.787

0.732

0.888

0.733

0.728

0.803

Random Forest

 Structured Data

0.726

0.701

0.652

0.845

0.654

0.647

0.737

 Unstructured Data

0.715

0.749

0.696

0.868

0.698

0.687

0.774

 Combined (Structured + Unstructured)

0.720

0.766

0.712

0.875

0.716

0.698

0.787

 Mean (Structured + Unstructured)

0.718

0.779

0.723

0.882

0.726

0.716

0.797

Gradient boosting

 Structured Data

0.737

0.711

0.651

0.845

0.652

0.649

0.736

 Unstructured Data

0.747

0.763

0.714

0.876

0.719

0.700

0.790

 Combined (Structured + Unstructured)

0.759

0.789

0.726

0.892

0.719

0.745

0.797

 Mean (Structured + Unstructured)

0.740

0.789

0.729

0.889

0.727

0.734

0.800

Extreme Gradient Boosting

 Structured Data

0.803

0.678

0.623

0.836

0.615

0.645

0.709

 Unstructured Data

0.897

0.734

0.682

0.866

0.679

0.691

0.761

 Combined (Structured + Unstructured)

0.893

0.779

0.714

0.886

0.708

0.733

0.787

 Mean (Structured + Unstructured)

0.782

0.759

0.699

0.870

0.702

0.691

0.777