| Cutoff | AUC | Accuracy | Precision | Sensitivity | Specificity | F1 Score |
---|---|---|---|---|---|---|---|
Logistic Regression | |||||||
 Structured Data | 0.744 | 0.704 | 0.635 | 0.847 | 0.623 | 0.668 | 0.718 |
 Unstructured Data | 0.783 | 0.760 | 0.696 | 0.882 | 0.685 | 0.730 | 0.771 |
 Combined (Structured + Unstructured) | 0.779 | 0.784 | 0.717 | 0.894 | 0.705 | 0.753 | 0.788 |
 Mean (Structured + Unstructured) | 0.735 | 0.787 | 0.732 | 0.888 | 0.733 | 0.728 | 0.803 |
Random Forest | |||||||
 Structured Data | 0.726 | 0.701 | 0.652 | 0.845 | 0.654 | 0.647 | 0.737 |
 Unstructured Data | 0.715 | 0.749 | 0.696 | 0.868 | 0.698 | 0.687 | 0.774 |
 Combined (Structured + Unstructured) | 0.720 | 0.766 | 0.712 | 0.875 | 0.716 | 0.698 | 0.787 |
 Mean (Structured + Unstructured) | 0.718 | 0.779 | 0.723 | 0.882 | 0.726 | 0.716 | 0.797 |
Gradient boosting | |||||||
 Structured Data | 0.737 | 0.711 | 0.651 | 0.845 | 0.652 | 0.649 | 0.736 |
 Unstructured Data | 0.747 | 0.763 | 0.714 | 0.876 | 0.719 | 0.700 | 0.790 |
 Combined (Structured + Unstructured) | 0.759 | 0.789 | 0.726 | 0.892 | 0.719 | 0.745 | 0.797 |
 Mean (Structured + Unstructured) | 0.740 | 0.789 | 0.729 | 0.889 | 0.727 | 0.734 | 0.800 |
Extreme Gradient Boosting | |||||||
 Structured Data | 0.803 | 0.678 | 0.623 | 0.836 | 0.615 | 0.645 | 0.709 |
 Unstructured Data | 0.897 | 0.734 | 0.682 | 0.866 | 0.679 | 0.691 | 0.761 |
 Combined (Structured + Unstructured) | 0.893 | 0.779 | 0.714 | 0.886 | 0.708 | 0.733 | 0.787 |
 Mean (Structured + Unstructured) | 0.782 | 0.759 | 0.699 | 0.870 | 0.702 | 0.691 | 0.777 |