Classifier | Cohorts | AUC | Cut off | Accuracy | Sensitivity | Specificity | Positive predictive value | Negative predictive value | F1 |
---|---|---|---|---|---|---|---|---|---|
XGBoost | Training cohort | 1.000 | 0.794 | 0.992 | 1.000 | 1.000 | 1.000 | 0.986 | 1.000 |
Validation cohort | 0.759 | 0.794 | 0.705 | 0.679 | 0.842 | 0.765 | 0.629 | 0.712 | |
Logistic Regression | Training cohort | 0.842 | 0.555 | 0.778 | 0.672 | 0.878 | 0.813 | 0.759 | 0.735 |
Validation cohort | 0.827 | 0.555 | 0.762 | 0.750 | 0.866 | 0.773 | 0.770 | 0.748 | |
LightGBM | Training cohort | 0.984 | 0.495 | 0.937 | 0.938 | 0.952 | 0.939 | 0.937 | 0.938 |
Validation cohort | 0.770 | 0.495 | 0.697 | 0.728 | 0.780 | 0.708 | 0.714 | 0.712 | |
Random Forest | Training cohort | 1.000 | 0.545 | 0.988 | 1.000 | 0.997 | 0.998 | 0.981 | 0.999 |
Validation cohort | 0.787 | 0.545 | 0.678 | 0.750 | 0.747 | 0.808 | 0.620 | 0.769 | |
AdaBoost | Training cohort | 0.994 | 0.499 | 0.958 | 0.978 | 0.956 | 0.948 | 0.967 | 0.962 |
Validation cohort | 0.705 | 0.499 | 0.676 | 0.705 | 0.718 | 0.618 | 0.734 | 0.644 | |
SVM | Training cohort | 0.819 | 0.428 | 0.766 | 0.780 | 0.770 | 0.723 | 0.806 | 0.749 |
Validation cohort | 0.780 | 0.428 | 0.719 | 0.716 | 0.825 | 0.698 | 0.747 | 0.700 |