Skip to main content

Table 3 Comparative evaluation of six machine learning models for ten-fold resampling-validation

From: A potential predictive model based on machine learning and CPD parameters in elderly patients with aplastic anemia and myelodysplastic neoplasms

Classifier

Cohorts

AUC

Cut off

Accuracy

Sensitivity

Specificity

Positive predictive value

Negative predictive value

F1

XGBoost

Training cohort

1.000

0.794

0.992

1.000

1.000

1.000

0.986

1.000

Validation cohort

0.759

0.794

0.705

0.679

0.842

0.765

0.629

0.712

Logistic Regression

Training cohort

0.842

0.555

0.778

0.672

0.878

0.813

0.759

0.735

Validation cohort

0.827

0.555

0.762

0.750

0.866

0.773

0.770

0.748

LightGBM

Training cohort

0.984

0.495

0.937

0.938

0.952

0.939

0.937

0.938

Validation cohort

0.770

0.495

0.697

0.728

0.780

0.708

0.714

0.712

Random Forest

Training cohort

1.000

0.545

0.988

1.000

0.997

0.998

0.981

0.999

Validation cohort

0.787

0.545

0.678

0.750

0.747

0.808

0.620

0.769

AdaBoost

Training cohort

0.994

0.499

0.958

0.978

0.956

0.948

0.967

0.962

Validation cohort

0.705

0.499

0.676

0.705

0.718

0.618

0.734

0.644

SVM

Training cohort

0.819

0.428

0.766

0.780

0.770

0.723

0.806

0.749

Validation cohort

0.780

0.428

0.719

0.716

0.825

0.698

0.747

0.700

  1. XGBoost eXtreme gradient boosting, LightGBM light gradient boosting machine, AdaBoost Adaptive boosting, SVM Support vector machines