Development Stage | Performance Metrics * | ML Algorithm | |||
---|---|---|---|---|---|
XGBoost | Random Forest | Support Vector Machines | K-Nearest Neighbors | ||
Inclusive model: 150 variables | Recall | 0.868 | 0.816 | 0.855 | 0.829 |
Precision | 0.815 | 0.879 | 0.833 | 0.621 | |
ROC-AUC | 0.882 | 0.878 | 0.882 | 0.779 | |
Accuracy | 0.886 | 0.897 | 0.890 | 0.764 | |
Practical model: 20 variables | Recall | 0.855 | 0.829 | 0.816 | 0.711 |
Precision | 0.660 | 0.663 | 0.660 | 0.610 | |
ROC-AUC | 0.810 | 0.802 | 0.796 | 0.734 | |
Accuracy | 0.796 | 0.794 | 0.789 | 0.741 | |
Practical model in initializing ML-LHS: 20 variables | Recall | 0.830 | Â | Â | Â |
Precision | 0.726 | Â | Â | Â | |
ROC-AUC | 0.816 | Â | Â | Â | |
Accuracy | 0.812 | Â | Â | Â |