Skip to main content

Table 3 Comparison of different ML algorithms for TIA risk prediction models at various development stages

From: Development of transient ischemic attack risk prediction model suitable for initializing a learning health system unit using electronic medical records

Development Stage

Performance Metrics *

ML Algorithm

XGBoost

Random Forest

Support Vector Machines

K-Nearest Neighbors

Inclusive model: 150 variables

Recall

0.868

0.816

0.855

0.829

Precision

0.815

0.879

0.833

0.621

ROC-AUC

0.882

0.878

0.882

0.779

Accuracy

0.886

0.897

0.890

0.764

Practical model: 20 variables

Recall

0.855

0.829

0.816

0.711

Precision

0.660

0.663

0.660

0.610

ROC-AUC

0.810

0.802

0.796

0.734

Accuracy

0.796

0.794

0.789

0.741

Practical model in initializing ML-LHS: 20 variables

Recall

0.830

   

Precision

0.726

   

ROC-AUC

0.816

   

Accuracy

0.812

   
  1. *All base models used default settings