Model | AUC | Optimal cutoff | Accuracy | Sensitivity | Specificity | Precision | F1 score | Brier score |
---|---|---|---|---|---|---|---|---|
LR | 0.850 (0.829, 0.869) | 0.409 | 0.779 (0.758, 0.799) | 0.770 (0.734, 0.803) | 0.785 (0.759, 0.810) | 0.704 (0.671, 0.740) | 0.736 (0.709, 0.763) | 0.153 (0.143, 0.164) |
RF | 0.837 (0.817, 0.857) | 0.478 | 0.790 (0.771, 0.810) | 0.721 (0.686, 0.754) | 0.836 (0.812, 0.859) | 0.746 (0.712, 0.780) | 0.732 (0.704, 0.761) | 0.158 (0.148, 0.169) |
NB | 0.834 (0.813, 0.854) | 0.209 | 0.770 (0.749, 0.791) | 0.721 (0.687, 0.755) | 0.802 (0.776, 0.827) | 0.708 (0.673, 0.743) | 0.714 (0.688, 0.742) | 0.158 (0.148, 0.169) |
SVM | 0.834 (0.813, 0.856) | 0.388 | 0.770 (0.750, 0.790) | 0.750 (0.715, 0.783) | 0.784 (0.758, 0.810) | 0.698 (0.663, 0.730) | 0.723 (0.695, 0.749) | 0.159 (0.149, 0.171) |
XGBoost | 0.834 (0.814, 0.855) | 0.387 | 0.775 (0.754, 0.794) | 0.761 (0.728, 0.792) | 0.784 (0.758, 0.809) | 0.702 (0.666, 0.736) | 0.730 (0.704, 0.756) | 0.161 (0.149, 0.173) |
MLP | 0.807 (0.784, 0.828) | 0.448 | 0.752 (0.730, 0.773) | 0.720 (0.685, 0.754) | 0.774 (0.746, 0.800) | 0.680 (0.642, 0.716) | 0.699 (0.669, 0.725) | 0.186 (0.180, 0.192) |
KNN | 0.779 (0.757, 0.802) | 0.265 | 0.697 (0.672, 0.720) | 0.789 (0.755, 0.821) | 0.635 (0.603, 0.668) | 0.590 (0.553, 0.625) | 0.675 (0.644, 0.703) | 0.205 (0.192, 0.219) |
DT | 0.749 (0.725, 0.774) | 0.473 | 0.774 (0.754, 0.794) | 0.670 (0.635, 0.709) | 0.843 (0.819, 0.866) | 0.740 (0.706, 0.774) | 0.703 (0.675, 0.733) | 0.175 (0.163, 0.186) |