Model | AUC | Optimal cutoff | Accuracy | Sensitivity | Specificity | Precision | F1 score | Brier score |
---|---|---|---|---|---|---|---|---|
LR | 0.867 (0.855, 0.878) | 0.322 | 0.778 (0.765, 0.792) | 0.845 (0.826, 0.863) | 0.735 (0.717, 0.754) | 0.673 (0.651, 0.695) | 0.749 (0.732, 0.767) | 0.144 (0.136, 0.150) |
MLP | 0.859 (0.847, 0.871) | 0.405 | 0.764 (0.751, 0.778) | 0.845 (0.826, 0.864) | 0.712 (0.693, 0.731) | 0.654 (0.632, 0.676) | 0.737 (0.720, 0.754) | 0.173 (0.169, 0.177) |
SVM | 0.857 (0.845, 0.869) | 0.326 | 0.786 (0.773, 0.799) | 0.795 (0.776, 0.815) | 0.780 (0.763, 0.796) | 0.700 (0.677, 0.722) | 0.744 (0.727, 0.761) | 0.148 (0.141, 0.155) |
NB | 0.854 (0.842, 0.866) | 0.204 | 0.772 (0.759, 0.786) | 0.771 (0.750, 0.794) | 0.773 (0.755, 0.791) | 0.687 (0.663, 0.710) | 0.727 (0.708, 0.746) | 0.169 (0.160, 0.177) |
XGBoost | 0.855 (0.843, 0.867) | 0.385 | 0.769 (0.755, 0.783) | 0.796 (0.775, 0.818) | 0.751 (0.734, 0.770) | 0.674 (0.652, 0.696) | 0.730 (0.713, 0.747) | 0.151 (0.144, 0.158) |
RF | 0.854 (0.842, 0.867) | 0.399 | 0.780 (0.766, 0.793) | 0.799 (0.778, 0.819) | 0.767 (0.750, 0.786) | 0.689 (0.666, 0.712) | 0.740 (0.723, 0.757) | 0.150 (0.143, 0.157) |
KNN | 0.815 (0.801, 0.828) | 0.265 | 0.728 (0.714, 0.742) | 0.808 (0.789, 0.828) | 0.677 (0.658, 0.695) | 0.617 (0.594, 0.638) | 0.700 (0.682, 0.717) | 0.183 (0.174, 0.192) |
DT | 0.785 (0.766, 0.792) | 0.477 | 0.779 (0.729, 0.774) | 0.693 (0.668, 0.719) | 0.835 (0.819, 0.850) | 0.731 (0.709, 0.753) | 0.712 (0.692, 0.730) | 0.168 (0.161, 0.176) |