Machine learning methods | ||||||||
Word embs. | Word2Vec | TF-IDF | ||||||
Model | U-Data (mSen.) | P-Data (mSen.) | U-Data (mAcc.) | P-Data (mAcc.) | U-Data (mSen.) | P-Data (mSen.) | U-Data (mAcc.) | P-Data (mAcc.) |
KNN | 0.33 | 0.30 | 0.78 | 0.78 | 0.34 | 0.36 | 0.81 | 0.80 |
(0.238-0.422) | (0.210-0.389) | (0.755-0.806) | (0.757-0.808) | (0.247-0.433) | (0.266-0.454) | (0.792-0.840) | (0.782-0.830) | |
SVM | 0.20 | 0.20 | 0.77 | 0.77 | 0.44 | 0.42 | 0.85 | 0.85 |
(0.122-0.278) | (0.122-0.278) | (0.750-0.801) | (0.750-0.801) | (0.343-0.537) | (0.323-0.517) | (0.837-0.880) | (0.835-0.878) | |
NB | 0.20 | 0.24 | 0.76 | 0.70 | 0.20 | 0.22 | 0.78 | 0.79 |
(0.122-0.278) | (0.156-0.324) | (0.738-0.791) | (0.673-0.729) | (0.247-0.433) | (0.266-0.454) | (0.787-0.835) | (0.789-0.837) | |
RF | 0.20 | 0.20 | 0.77 | 0.77 | 0.34 | 0.36 | 0.81 | 0.81 |
(0.122-0.278) | (0.122-0.278) | (0.750-0.801) | (0.750-0.801) | (0.247-0.433) | (0.266-0.454) | (0.787-0.835) | (0.789-0.837) | |
AdaBoost | 0.33 | 0.35 | 0.65 | 0.61 | 0.33 | 0.33 | 0.41 | 0.74 |
(0.238-0.422) | (0.256-0.443) | (0.627-0.686) | (0.589-0.649) | (0.238-0.422) | ( 0.238-0.422) | (0.389-0.450) | (0.715-0.769) | |
GB | 0.30 | 0.31 | 0.79 | 0.79 | 0.43 | 0.45 | 0.84 | 0.85 |
(0.210-0.389) | (0.219-0.400) | (0.773-0.823) | (0.774-0.824) | (0.333-0.527) | (0.352-0.547) | (0.818-0.863) | (0.829-0.872) | |
XGB | 0.33 | 0.33 | 0.80 | 0.80 | 0.49 | 0.52 | 0.85 | 0.86 |
(0.238-0.422) | (0.238-0.422) | (0.778-0.828) | (0.784-0.832) | (0.392-0.588) | (0.422-0.618) | (0.838-0.881) | (0.840-0.883) | |
Deep learning methods | ||||||||
Model | U-Data(mSen) | P-Data(mSen) | U-Data(Accuracy) | P-Data(Accuracy) | ||||
LSTM | 0.42 | 0.53 | 0.70 | 0.78 | ||||
(0.346-0.490) | (0.455-0.619) | (0.673-0.730) | (0.753-0.805) | |||||
BERT | 0.40 | 0.54 | 0.72 | 0.79 | ||||
(0.331-0.459) | (0.477-0.607) | (0.692-0.746) | (0.768-0.819) | |||||
BioGPT | 0.45 | 0.60 | 0.74 | 0.80 | ||||
(0.235-0.669) | (0.391-0.811) | (0.710-0.764) | (0.772-0.822) |