Skip to main content

Table 3 Retrieval performance of each method alone using a set of sampled Gold Standard cases

From: Large-scale identification of social and behavioral determinants of health from clinical notes: comparison of Latent Semantic Indexing and Generative Pretrained Transformer (GPT) models

  

Precision

Recall

F1

SBDH Category

Sampled N (P)

ICD-9

LSI

GPT-3.5

GPT-4

ICD-9

LSI

GPT-3.5

GPT-4

ICD-9

LSI

GPT-3.5

GPT-4

Housing insecurity

80 (53)

0.85

0.95

0.78

0.92

0.64

0.72

0.47

0.62

0.73

0.82

0.59

0.74

Tobacco use

80 (56)

0.95

0.93

0.89

0.88

0.68

0.66

0.43

0.93

0.79

0.77

0.58

0.90

Opiate abuse

80 (36)

0.75

0.63

0.75

0.67

0.83

0.69

0.42

0.83

0.79

0.66

0.54

0.74

Alcohol abuse

80 (52)

0.85

0.95

0.84

0.82

0.65

0.73

0.40

0.90

0.74

0.83

0.55

0.86

Cocaine abuse

80 (43)

0.78

0.80

0.90

0.95

0.72

0.74

0.42

0.81

0.75

0.77

0.57

0.88

Physical & sexual abuse

67 (37)

0.96

0.67

0.88

1.00

0.70

0.49

0.38

0.73

0.81

0.56

0.53

0.84

Unemployed

54 (36)

1.00

1.00

0.85

0.91

0.42

0.81

0.31

0.89

0.59

0.89

0.45

0.90

Legal circumstances

53 (26)

1.00

0.72

0.67

0.78

0.50

0.69

0.38

0.69

0.67

0.71

0.49

0.73

Financial circumstances

46 (18)

1.00

0.61

1.00

0.75

0.33

0.78

0.44

0.50

0.50

0.68

0.62

0.60

  1. The bold text indicate the highest precision, recall, or F1 for each SBDH category (row)