Model | Accuracy | AUC | Recall | Prec | F1 | Kappa | MCC | TT(sec) |
---|---|---|---|---|---|---|---|---|
Extra Trees Classifier | 0.8519 ± 0.0251 | 0.9151 ± 0.0279 | 0.8424 ± 0.0271 | 0.8598 ± 0.0265 | 0.8510 ± 0.0251 | 0.7770 ± 0.0378 | 0.7814 ± 0.0382 | 0.0480 |
CatBoost Classifier | 0.8496 ± 0.0253 | 0.9137 ± 0.0282 | 0.8400 ± 0.0299 | 0.8571 ± 0.0267 | 0.8483 ± 0.0255 | 0.7732 ± 0.0382 | 0.7777 ± 0.0381 | 6.9440 |
Random Forest Classifier | 0.8447 ± 0.0185 | 0.9136 ± 0.0311 | 0.8373 ± 0.0174 | 0.8507 ± 0.0211 | 0.8439 ± 0.0182 | 0.7663 ± 0.0277 | 0.7698 ± 0.0292 | 0.0390 |
Light Gradient Boosting Machine | 0.8190 ± 0.0304 | 0.9066 ± 0.0316 | 0.8079 ± 0.0361 | 0.8281 ± 0.0250 | 0.8178 ± 0.0286 | 0.7274 ± 0.0457 | 0.7324 ± 0.0442 | 0.1870 |
Gradient Boosting Classifier | 0.8143 ± 0.0290 | 0.9092 ± 0.0231 | 0.8062 ± 0.0283 | 0.8194 ± 0.0301 | 0.8127 ± 0.0280 | 0.7202 ± 0.0438 | 0.7239 ± 0.0452 | 0.2930 |
Extreme Gradient Boosting | 0.8120 ± 0.0336 | 0.9098 ± 0.0293 | 0.8007 ± 0.0372 | 0.8214 ± 0.0289 | 0.8108 ± 0.0324 | 0.7169 ± 0.0507 | 0.7222 ± 0.0491 | 0.0940 |
Decision Tree Classifier | 0.6893 ± 0.0654 | 0.7677 ± 0.0500 | 0.6770 ± 0.0739 | 0.7000 ± 0.0615 | 0.6882 ± 0.0654 | 0.5326 ± 0.0983 | 0.5373 ± 0.0974 | 0.0090 |