Skip to main content

Table 3 The performance comparison of different ML models (mean ± std)

From: Classification of coronary artery disease using radial artery pulse wave analysis via machine learning

Model

Accuracy

AUC

Recall

Prec

F1

Kappa

MCC

TT(sec)

Extra Trees Classifier

0.8519 ± 0.0251

0.9151 ± 0.0279

0.8424 ± 0.0271

0.8598 ± 0.0265

0.8510 ± 0.0251

0.7770 ± 0.0378

0.7814 ± 0.0382

0.0480

CatBoost Classifier

0.8496 ± 0.0253

0.9137 ± 0.0282

0.8400 ± 0.0299

0.8571 ± 0.0267

0.8483 ± 0.0255

0.7732 ± 0.0382

0.7777 ± 0.0381

6.9440

Random Forest Classifier

0.8447 ± 0.0185

0.9136 ± 0.0311

0.8373 ± 0.0174

0.8507 ± 0.0211

0.8439 ± 0.0182

0.7663 ± 0.0277

0.7698 ± 0.0292

0.0390

Light Gradient Boosting Machine

0.8190 ± 0.0304

0.9066 ± 0.0316

0.8079 ± 0.0361

0.8281 ± 0.0250

0.8178 ± 0.0286

0.7274 ± 0.0457

0.7324 ± 0.0442

0.1870

Gradient Boosting Classifier

0.8143 ± 0.0290

0.9092 ± 0.0231

0.8062 ± 0.0283

0.8194 ± 0.0301

0.8127 ± 0.0280

0.7202 ± 0.0438

0.7239 ± 0.0452

0.2930

Extreme Gradient Boosting

0.8120 ± 0.0336

0.9098 ± 0.0293

0.8007 ± 0.0372

0.8214 ± 0.0289

0.8108 ± 0.0324

0.7169 ± 0.0507

0.7222 ± 0.0491

0.0940

Decision Tree Classifier

0.6893 ± 0.0654

0.7677 ± 0.0500

0.6770 ± 0.0739

0.7000 ± 0.0615

0.6882 ± 0.0654

0.5326 ± 0.0983

0.5373 ± 0.0974

0.0090