Skip to main content

Table 6 Comparison of the ML performance with combined feature sets

From: RCC-Supporter: supporting renal cell carcinoma treatment decision-making using machine learning

 

Decision Tree

Random Forest

GBM

Precision

Recall

F-1 score

Accuracy

Precision

Recall

F-1 score

Accuracy

Precision

Recall

F-1 score

Accuracy

RF + Expert

0.82\(\:\pm\:\)0.03

0.77\(\:\pm\:\)0.03

0.79\(\:\pm\:\)0.03

0.89\(\:\pm\:\)0.03

0.87\(\:\pm\:\)0.03

0.79\(\:\pm\:\)0.03

0.81\(\:\pm\:\)0.03

0.90\(\:\pm\:\)0.02

0.84\(\:\pm\:\)0.03

0.81\(\:\pm\:\)0.03

0.82\(\:\pm\:\)0.03

0.90\(\:\pm\:\)0.02

RF + GBM

0.84\(\:\pm\:\)0.03

0.79\(\:\pm\:\)0.03

0.80\(\:\pm\:\)0.03

0.90\(\:\pm\:\)0.02

0.87\(\:\pm\:\)0.03

0.79\(\:\pm\:\)0.03

0.81\(\:\pm\:\)0.03

0.90\(\:\pm\:\)0.02

0.85\(\:\pm\:\)0.03

0.80\(\:\pm\:\)0.03

0.82\(\:\pm\:\)0.03

0.90\(\:\pm\:\)0.02

GBM + Expert

0.83\(\:\pm\:\)0.03

0.77\(\:\pm\:\)0.03

0.79\(\:\pm\:\)0.03

0.89\(\:\pm\:\)0.03

0.87\(\:\pm\:\)0.03

0.79\(\:\pm\:\)0.03

0.81\(\:\pm\:\)0.03

0.90\(\:\pm\:\)0.02

0.86\(\:\pm\:\)0.03

0.81\(\:\pm\:\)0.03

0.83\(\:\pm\:\)0.03

0.91\(\:\pm\:\)0.02

GBM + RF + Expert

0.83\(\:\pm\:\)0.03

0.78\(\:\pm\:\)0.03

0.80\(\:\pm\:\)0.03

0.90\(\:\pm\:\)0.03

0.86\(\:\pm\:\)0.03

0.78\(\:\pm\:\)0.03

0.80\(\:\pm\:\)0.03

0.90\(\:\pm\:\)0.03

0.84\(\:\pm\:\)0.03

0.81\(\:\pm\:\)0.03

0.82\(\:\pm\:\)0.03

0.90\(\:\pm\:\)0.02