Skip to main content

Table 6 Se, Sp, PPV, NPV, AUC of CNN algorithms

From: Analysis of anterior segment in primary angle closure suspect with deep learning models

  

Se

Sp

PPV

NPV

AUC

VGG-16

1

0.83

0.93

0.88

0.9

0.73

2

0.94

0.86

0.81

0.96

0.79

3

0.89

0.86

0.8

0.92

0.82

4

0.83

0.93

0.88

0.9

0.82

5

0.72

0.93

0.87

0.84

0.79

M

(95%CI)

0.84 (0.74,0.94)

0.90 (0.85,0.95)

0.85 (0.80,0.90)

0.90 (0.85,0.96)

0.79 (0.74,0.84)

Alexnet

1

0.89

0.93

0.89

0.93

0.81

2

0.89

0.93

0.89

0.93

0.94

3

0.89

0.96

0.94

0.93

0.8

4

0.72

0.96

0.93

0.84

0.86

5

0.78

0.96

0.93

0.87

0.82

M

(95%CI)

0.83

(0.74,0.93)

0.95

(0.93,0.97)

0.92

(0.89,0.95)

0.90

(0.85,0.95)

0.85

(0.77,0.92)

  1. Se: sensitivity; Sp: Specificity; PPV: positive predict value; NPV: negative predict value; AUC: area under the curve; CNN: convolutional neural network; VGG-16: Visual Geometry Group-16