Skip to main content

Table 3 Results displaying classical ML outcomes and stacking classification outcomes

From: Machine learning-based prognostic model for 30-day mortality prediction in Sepsis-3

 

Classical ML Model Result

Stacking-Based Meta Classifier Result

Classifiers

Accuracy

Precision

Recall

Specificity

F1-Score

Accuracy

Precision

Recall

Specificity

F1-Score

MLP

80.5

84.19

80.04

72.86

81.44

94.88

95.41

94.88

94.39

95.02

XGBoost

82.85

83.95

82.86

66.28

83.33

94.29

94.96

94.29

93.97

94.48

LR

76.63

83.81

76.62

75.45

78.75

95.52

95.79

95.52

93.65

95.60

ET

94.72

95.34

94.72

94.75

94.88

94.62

95.27

94.62

94.73

94.79

AdaBoost

79.98

82.97

79.98

67.70

81.09

93.51

94.45

93.51

93.79

93.76

GB

86.91

86.32

86.91

64.43

86.54

93.25

94.30

93.26

93.81

93.53

CatBoost

87.95

87.53

87.95

68.12

87.69

93.35

94.40

93.35

94.15

93.63

RF

82.83

83.92

82.83

66.18

83.29

93.87

94.69

93.87

93.97

94.09

DT

78.07

80.99

78.06

62.24

79.22

94.81

94.89

94.81

89.34

94.84