Skip to main content

Table 2 The tuning parameter values of machine learning algorithms

From: Machine learning-based evaluation of prognostic factors for mortality and relapse in patients with acute lymphoblastic leukemia: a comparative simulation study

Methods

Hyperparameters

Value for death outcome

Value for relapse outcome

ANN

size

5

5

weight decay

0.1

0.1

SVM

gamma

0.061

0.074

cost

1

1

kernel

radial

radial

LS-SVM

tau

0.0625

0.0625

sigma

0.099

0.131

kernel

rbfdot

rbfdot

NB

laplace

0

0

use kernel

TRUE

TRUE

adjust

1

1

RF

mtry

7

6

ntree

1000

500

DT

minsplit

6

6

minbucket

2

2

cp.

0.02

0.01

maxdepth

4

8

Bagging

mfinal

100

50

maxdepth

3

3

Boosting

mfinal

100

100

coeflearn

Breiman

Freund

maxdepth

3

3