Skip to main content

Table 4 Study sample characteristics between the train and test dataset for the numeric variables

From: Predicting high blood pressure using machine learning models in low- and middle-income countries

Variables \(\varvec{(\mu \pm \sigma )}\)

Total Population (n=184674)

Train dataset (n=147739)

Test Dataset (n=36935)

Age

40.06 ± 13.27

40.08 ± 13.26

40.02 ± 13.31

Years at school

7.6 ± 5.33

7.6 ± 5.33

7.58 ± 5.32

People in household

3.01 ± 2.02

3.01 ± 2.02

3 ± 2.01

Earnings per year

1727.08 ± 1533.97

1734.25 ± 1538.65

1698.52 ± 1515

Age started smoking

18.65 ± 1.77

18.65 ± 1.77

18.63 ± 1.78

Length time smoking

7.38 ± 6.32

7.34 ± 6.33

7.52 ± 6.28

Number tobacco

7.62 ± 3.55

7.64 ± 3.47

7.57 ± 3.94

Age stopped smoking

29.87 ± 5.81

29.87 ± 5.82

29.88 ± 5.77

Number alcoholic drinks

4.76 ± 1.06

4.75 ± 1.06

4.76 ± 1.06

Number daily fruit vegetables

10.91 ± 6.73

10.91 ± 6.72

10.91 ± 6.75

Days vigorous exercise

4.66 ± 1.04

4.66 ± 1.04

4.67 ± 1.04

Days moderate exercise

5.64 ± 1.41

5.64 ± 1.41

5.64 ± 1.41

Time walking bicycling minutes

60.23 ± 34.33

60.33 ± 34.33

59.87 ± 34.32

Time sedentary

206.03 ± 172.04

205.89 ± 171.9

206.57 ± 172.59

Height

162.12 ± 10.29

162.12 ± 10.32

162.14 ± 10.17

Weight

66.62 ± 17.73

66.63 ± 17.73

66.59 ± 17.7

Waist circumference

84.89 ± 25.35

84.87 ± 25.13

84.98 ± 26.24

Hip circumference

95.89 ± 15.71

95.88 ± 15.7

95.9 ± 15.75

Fasting blood glucose

39.67 ± 37.09

39.6 ± 37.07

39.94 ± 37.17

Total cholesterol

76.42 ± 72.24

76.26 ± 72.23

77.06 ± 72.29

Urinary sodium

121.13 ± 32.8

121.09 ± 32.76

121.29 ± 32.95

Urinary creatinine

55.04 ± 38.3

55.06 ± 38.39

54.96 ± 37.93

Triglycerides

84.16 ± 23.99

84.13 ± 23.97

84.29 ± 24.08

Hdl cholesterol

17.67 ± 17.64

17.62 ± 17.64

17.87 ± 17.65

Systolic

126.91 ± 19.1

126.91 ± 19.09

126.89 ± 19.17

Diastolic

80.27 ± 11.7

80.28 ± 11.7

80.22 ± 11.71

Reading bpm

77.48 ± 12.32

77.48 ± 12.31

77.48 ± 12.33