Skip to main content

Table 6 Experimental Results

From: An improved data augmentation approach and its application in medical named entity recognition

Models

Precision(%)

Recall(%)

F1(%)

â‘ Word2Vec-BiLSTM-CRF

80.000

77.907

78.940

â‘¡Word2Vec-BiLSTM-CRF (CRR)

80.744

77.757

79.223

(+ 0.28)

â‘¢Word2Vec-BiLSTM-CRF (TER)

80.120

78.091

79.092

(+ 0.15)

â‘£BERT-CRF

83.133

81.956

82.540

⑤BERT-CRF(CRR)

82.474

83.422

82.945

(+ 0.41)

â‘¥BERT-CRF (TER)

82.640

83.039

82.839

(+ 0.30)

⑦BERT-BiLSTM-CRF

80.338

83.939

82.099

â‘§BERT-BiLSTM-CRF (CRR)

82.122

85.105

83.587

(+ 1.49)

⑨BERT-BiLSTM-CRF (TER)

83.328

82.606

82.965

(+ 0.87)

â‘©RoBERTa-wwm-ext-CRF

82.042

83.122

82.579

⑪RoBERTa-wwm-ext-CRF (CRR)

82.323

83.256

82.787

(+ 0.21)

â‘«RoBERTa-wwm-ext-CRF (TER)

81.734

83.722

82.716

(+ 0.14)

⑬RoBERTa-wwm-ext-BiLSTM-CRF

82.788

83.505

83.145

â‘­RoBERTa-wwm-ext-BiLSTM-CRF (CRR)

82.756

83.639

83.195

(+ 0.05)

â‘®RoBERTa-wwm-ext-BiLSTM-CRF (TER)

83.276

84.872

84.066

(+ 0.92)