Skip to main content

Table 2 Performance measures for assessing the predictive accuracy of mania treatment continuation prediction models

From: Unlocking treatment success: predicting atypical antipsychotic continuation in youth with mania

Reference modelc

AUC

P valued

Sensitivity

Specificity

PPV

NPV

F1 Score

Intercept

Slope

Recall

Precision

Generalized Linear Model (Reference)

0.82

(0.79–0.85)

NA

0.71

0.73

0.72

0.82

0.73

-1.24

1.00

0.73

0.75

Support Vector Machines with Linear Kernel

0.82

(0·79–0·85)

0.73

0.72

0.73

0.72

0.76

0.78

-1.23

1.14

0.77

0.76

Generalized Additive Model using LOESS

0.82

(0·78–0·86)

0.58

0.73

0.74

0.75

0.88

0.74

-1.25

1.12

0.73

0.75

Stochastic Gradient Boosting

0.81

(0·78–0·84)

0.49

0.70

0.76

0.73

0.89

0.74

-1.26

1.19

0.72

0.75

Random Forest

0.78

(0·75–0·81)

0.02

0.70

0.88

0.74

0.83

0.71

-0.29

1.78

0.74

0.75

Super Learner

0.82

(0·79–0·85)

0.84

0.74

0.72

0.74

0.89

0.74

-1.24

1.01

0.74

0.74

  1. c As the reference model, we employed a generalized linear model
  2. d Using the DeLong’s test, we compared the area under the curve of each machine-learning-based prediction model with the reference model
  3. P values less than 0.05 are bold