Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Table 2 Hyper-parameters for the developed models

From: Second opinion machine learning for fast-track pathway assignment in hip and knee replacement surgery: the use of patient-reported outcome measures

Hyper-parameter name

Range

Selected value

Scaling Method

min-max, standard, Yeo-Johnson, max-abs, normalize, robust, None

LR: max-abs; DT: robust; SVM: min-max; RF: Yeo-Johnson; XGB: min-max, MLP: max-abs, FIGS: None, HST: None

Number of features

Uniform(5,17)

LR: 5; DT: 8; SVM: 15; RF: 16; XGB: 15, MLP: 16, FIGS: 10, HST: 9

Logistic Regression

     Penalty

l2, l1, elasticnet

elasticnet

     C

Uniform(0.5, 2)

0.6662249852612048

     Solver

SAGA

SAGA

     l1 Ratio

Uniform(0,1)

0.31856895245132366

Decision Tree

     Criterion

gini, entropy

gini

     Splitter

best, random

best

     Max. Depth

Uniform(3,5)

3

SVM

     Kernel

linear, rbf, sigmoid, poly

rbf

     C

Uniform(0,1)

0.5096243767199001

     Degree

Uniform(2,10)

NA

     Gamma

auto, scale

scale

Random Forest

     Num. Estimators

Uniform(10,1000)

787

     Criterion

gini, entropy

gini

     Max. Depth

Uniform(1,100)

4

     Max. Features

sqrt, log2

log2

XGBoost

     Eta

Uniform(0.01, 0.25)

0.20057413447736855

     Gamma

Uniform(0,100)

1.3948395933415347

     Subsample

Uniform(0.5, 1)

0.75

     Lambda

Uniform(0, 5)

2.6673284087546447

     Alpha

Uniform(0,5)

1.6265515257949819

     Num. Estimators

Uniform(10,1000)

918

     Max. Depth

Uniform(1,100)

4

     Scale Pos. Weight

Uniform(0,100)

88.29

Multi-layer Perceptron

     Activation

relu, logistic, tanh

logistic

     Solver

adam, lbfgs, sgd

lbfgs

     Alpha

Uniform(0.0001, 0.1)

0.05103420653681868

     Learning rate

constant, adaptive, invscaling

NA

     Beta\(_1\)

Uniform(0,1)

NA

     Beta\(_2\)

Uniform(0,1)

NA

     Early stopping

True, False

True

     Hidden layer sizes

Uniform(18,100000)

100