AEDs | Models | AUROC | BAL-ACC | SEN | SPE | PPV | NPV |
---|---|---|---|---|---|---|---|
Vigabatrin | Our model | 0.90 ± 0.003 | 0.93 ± 0.030 | 0.88 ± 0.057 | 0.99 ± 0.003 | 0.94 ± 0.037 | 1.00 ± 0.000 |
KNN | 0.79 ± 0.024 | 0.88 ± 0.025 | 0.78 ± 0.047 | 0.98 ± 0.003 | 0.58 ± 0.047 | 1.00 ± 0.000 | |
Logistic regression | 0.77 ± 0.015 | 0.60 ± 0.006 | 0.22 ± 0.009 | 0.99 ± 0.003 | 0.66 ± 0.037 | 0.89 ± 0.006 | |
Naïve Bayes | 0.74 ± 0.022 | 0.54 ± 0.003 | 0.10 ± 0.003 | 0.99 ± 0.003 | 0.77 ± 0.047 | 0.72 ± 0.015 | |
Random forest | 0.81 ± 0.028 | 0.83 ± 0.052 | 0.68 ± 0.101 | 0.99 ± 0.003 | 0.65 ± 0.056 | 0.98 ± 0.009 | |
LightGBM | 0.82 ± 0.028 | 0.92 ± 0.029 | 0.85 ± 0.056 | 0.99 ± 0.003 | 0.65 ± 0.056 | 0.99 ± 0.003 | |
Prednisolone | Our model | 0.80 ± 0.047 | 0.92 ± 0.031 | 0.85 ± 0.063 | 1.00 ± 0.000 | 0.91 ± 0.126 | 1.00 ± 0.000 |
KNN | 0.67 ± 0.072 | 0.83 ± 0.036 | 0.68 ± 0.069 | 0.99 ± 0.003 | 0.50 ± 0.142 | 1.00 ± 0.000 | |
Logistic regression | 0.63 ± 0.069 | 0.65 ± 0.052 | 0.31 ± 0.101 | 0.99 ± 0.003 | 0.35 ± 0.142 | 0.92 ± 0.012 | |
Naïve Bayes | 0.62 ± 0.072 | 0.52 ± 0.004 | 0.06 ± 0.012 | 0.99 ± 0.003 | 0.40 ± 0.126 | 0.78 ± 0.018 | |
Random forest | 0.70 ± 0.069 | 0.53 ± 0.015 | 0.08 ± 0.028 | 0.99 ± 0.003 | 0.55 ± 0.148 | 0.85 ± 0.037 | |
LightGBM | 0.61 ± 0.063 | 0.52 ± 0.015 | 0.07 ± 0.027 | 0.98 ± 0.003 | 0.30 ± 0.126 | 0.91 ± 0.012 | |
Clobazam | Our model | 0.92 ± 0.050 | 0.91 ± 0.045 | 0.82 ± 0.088 | 1.00 ± 0.003 | 0.90 ± 0.101 | 1.00 ± 0.000 |
KNN | 0.67 ± 0.069 | 0.82 ± 0.064 | 0.65 ± 0.126 | 0.99 ± 0.003 | 0.35 ± 0.142 | 1.00 ± 0.00 | |
Logistic regression | 0.64 ± 0.069 | 0.68 ± 0.018 | 0.38 ± 0.034 | 0.99 ± 0.003 | 0.35 ± 0.142 | 0.98 ± 0.006 | |
Naïve Bayes | 0.57 ± 0.066 | 0.50 ± 0.004 | 0.02 ± 0.006 | 0.99 ± 0.003 | 0.45 ± 0.148 | 0.69 ± 0.006 | |
Random forest | 0.70 ± 0.072 | 0.56 ± 0.031 | 0.14 ± 0.060 | 0.99 ± 0.003 | 0.50 ± 0.142 | 0.91 ± 0.015 | |
LightGBM | 0.69 ± 0.069 | 0.54 ± 0.040 | 0.09 ± 0.037 | 0.99 ± 0.003 | 0.50 ± 0.142 | 0.88 ± 0.027 |