Skip to main content

Table 6 Comparing the proposed model with recent literature

From: Improved liver disease prediction from clinical data through an evaluation of ensemble learning approaches

Research work

Algorithms

considered

Dataset used

Highest accuracy (%)

Precision (%)

Recall (%)

F1-score (%)

Specificity (%)

AUC/-ROC (%)

Negative predicted values (%)

MCC (%)

False-positive rate

False-negative rate

False discovery rate

Misclassification rate

Run time (mins.)

Amin et al. [28]

LR, KNN, RF, SVM, MLP, voting

ILPD

88.10 with RF

85.33

92.3

88.68

-

88.20

93.00

-

-

0.0700

0.1467

0.1190

3.337

Afrin et al. [29]

LR, DT, RF, AdaBoost, KNN, LDA, GB, SVM

ILPD

94.29 with DT

92

99

96

-

-

99.00

-

-

0.0100

0.0800

0.0571

-

Bulucu et al. [36]

RF, J48, GB, AdaBoost, LGBM

UCI dataset

98.8 with LGBM

98.1

99.4

-

-

-

 

-

-

0.0060

0.1960

0.0120

-

Dritsas and Trigka [30]

NB, SVM, LR, ANN, kNN, J48, RF, RT, RepTree, RotF,

AdaBoostM1, stacking, bagging, voting

ILPD

80.1

80.4

80.1

80.1

-

88.4

80.10

-

-

0.1990

0.1960

0.1990

-

Gupta et al. [40]

LR, DT, RF, KNN, XGB, LGB

ILPD

63 with LGB and RF both

64 with RF

63 with RF

63 with LGB and RF both

-

-

63.00

-

-

0.3700

0.3600

0.3700

-

Hameed et al. [41]

RF, SVM, LR, DT, AdaBoost, GB, KNN

ILPD

80.30 with RF

80.30

80.26

80.20

-

-

80.30

-

-

0.1974

0.1970

0.1970

-

Kuzhippallil et al. [32]

LR, kNN, DT, RF, GB, AdaBoost, XGB, LGBM, stacking

ILPD

86 XGB, LGBM

86 XGB

86 XGB

86 XGB

-

-

86.00

-

-

0.1400

0.1400

0.1400

0.191

Nahar et al. [31]

AdaBoost, LogitBoost, RF, bagging (RepTree and J48)

ILPD

71.53 with LogitBoost

83.60

56.45

-

-

72.20

56.45

-

-

0.4355

0.1640

0.2847

-

Naseem et al. [33]

A1DE, MLP, NB, kNN, SVM, J48, CHIRP, CDT, forest-PA, RF

BUPA

72.17% with RF

62.07

68.7

65.22

74.30

-

79.50

42.28

0.2570

0.3130

0.3793

0.2783

-

SanikaVT

71.36% with SVM

100

71.36

83.28

-

-

0

-

-

0.2864

0

28.64

-

Quadir et al. [34]

GB, XGB, bagging, RF, ET, stacking

ILPD

93.15

with stacking

80.76

94.59

87.13

74.22

84.41

94.59

-

0.2578

0.0541

0.1924

0.0685

-

Dalal [35]

Hybrid XGB

ILPD

93.65

-

-

-

-

98.70

-

-

-

-

-

0.0635

-

Zhao et al. [42]

SVM, GP, RF, XGB, bagging

BUPA

80.35 with RF

68.75

38.82

49.62

-

-

38.82

-

-

0.6118

0.3125

0.1965

-

Our paper

XGB, LGBM, GB, BDT, RF, ET, LR, DT, SVM

LDPD

98.80 with GB

98.50

98.50

98.50

97.74

98.60

98.10

97.08

0.0226

0.0077

0.0091

0.0120

4.792