Models Name | AUC-ROC | AUC-PRC | PPV | Sensitivity | Accuracy | F1 | MCC | BS |
---|---|---|---|---|---|---|---|---|
SVM | 0.86 | 0.75 | 0.812 | 0.764 | 0.885 | 0.787 | 0.709 | 0.433 |
Naïve Bayas | 0.84 | 0.72 | 0.857 | 0.705 | 0.885 | 0.774 | 0.704 | 0.634 |
XGB | 0.88 | 0.82 | 0.923 | 0.705 | 0.901 | 0.800 | 0.744 | 0.395 |
ADA | 0.86 | 0.74 | 0.750 | 0.705 | 0.852 | 0.727 | 0.626 | 0.643 |
Bagging | 0.89 | 0.79 | 0.764 | 0.764 | 0.868 | 0.764 | 0.673 | 0.412 |
Multinomial LR | 0.84 | 0.75 | 0.866 | 0.764 | 0.901 | 0.812 | 0.748 | 0.439 |
KNN | 0.81 | 0.69 | 0.750 | 0.705 | 0.852 | 0.727 | 0.626 | 0.476 |
Decision Tree | 0.85 | 0.75 | 0.785 | 0.647 | 0.852 | 0.709 | 0.617 | 0.413 |
RF | 0.92 | 0.86 | 0.866 | 0.764 | 0.901 | 0.812 | 0.748 | 0.311 |
ANN | 0.96 | 0.91 | 0.894 | 0.819 | 0.930 | 0.855 | 0.811 | 0.201 |