Skip to main content

Table 3 Comparison of the classification (normal, NPs, and IP) performance in the KUAH dataset between deep learning and humans

From: Deep learning model for differentiating nasal cavity masses based on nasal endoscopy images

 

Class

Recall

Precision

F1-score

AUC for multiclass

Accuracy for each class

Curriculum learning backbone network: InceptionResNetV2

Normal

0.90 ± 0.04

0.78 ± 0.03

0.84 ± 0.03

0.95 ± 0.02

0.82 ± 0.02

NPs

0.82 ± 0.02

0.85 ± 0.01

0.84 ± 0.02

0.88 ± 0.01

0.80 ± 0.02

IP

0.56 ± 0.04

0.81 ± 0.03

0.66 ± 0.04

0.87 ± 0.03

0.85 ± 0.02

Seven otolaryngologists

Normal

0.98 ± 0.01

0.85 ± 0.02

0.91 ± 0.01

0.95 ± 0.02

0.93 ± 0.01

NPs

0.71 ± 0.08

0.91 ± 0.02

0.80 ± 0.05

0.81 ± 0.03

0.80 ± 0.04

IP

0.64 ± 0.08

0.48 ± 0.10

0.51 ± 0.01

0.76 ± 0.04

0.86 ± 0.04

Rhinologists

Normal

0.98 ± 0.02

0.87 ± 0.05

0.92 ± 0.03

0.95 ± 0.02

0.94 ± 0.02

NPs

0.75 ± 0.11

0.89 ± 0.08

0.81 ± 0.04

0.81 ± 0.02

0.81 ± 0.03

IP

0.55 ± 0.31

0.54 ± 0.31

0.46 ± 0.07

0.72 ± 0.11

0.86 ± 0.05

Senior residents

Normal

0.98 ± 0.02

0.85 ± 0.01

0.91 ± 0.01

0.95 ± 0.02

0.94 ± 0.01

NPs

0.78 ± 0.03

0.92 ± 0.01

0.84 0.01

0.85±

0.11

0.84 ± 0.01

IP

0.67 ± 0.06

0.54 ± 0.07

0.60 ± 0.01

0.80 ± 0.02

0.89 ± 0.01

Junior residents

Normal

0.98 ± 0.03

0.83 ± 0.04

0.90 ± 0.02

0.94

± 0.02

0.93 ± 0.01

NPs

0.62 ± 0.04

0.92 ± 0.03

0.74 ± 0.02

0.78 ± 0.02

0.76 ± 0.01

IP

0.71 ± 0.02

0.36 ± 0.02

0.47 ± 0.01

0.77 ± 0.01

0.82 ± 0.01

  1. KUAH Korea University Anam Hospital, NPs Nasal polyps, IP inverted papilloma