Skip to main content

Table 2 Main results on the real-world dataset, SACHS. Unconstrained versions of causal discovery learning yield relatively low performance, while the NoTears algorithms are the two best. MetaNoTears-L1 is the best-performing algorithm and shows improvement in the metrics. Abbreviations: FDR (false discovery rate), TPR (true positive rate), FPR (false positive rate), SHD (structural Hamming distance), and NNZ (number of non-zero entries)

From: Developing a novel causal inference algorithm for personalized biomedical causal graph learning using meta machine learning

Methods

FDR

TPR

FPR

SHD

NNZ

MTL

0.73±0.01

0.42±0.03

0.44±0.02

20.24±0.73

23.92±0.95

NoTears-L1

0.69±0.04

0.34±0.06

0.31±0.01

16.83±1.76

17.50±0.32

Unconstrained-L1

0.88±0.02

0.14±0.04

0.40±0.02

26.36±0.52

17.96±0.99

AVICI

0.80±0.02

0.40±0.05

0.35±0.03

20.23±1.32

18.23±0.47

MetaUnconstrained-L1

0.98±0.01

0.02±0.01

0.28±0.00

26.20±0.73

11.32±0.18

MetaNoTears-L1

0.62±0.02 \(^*\)

0.40±0.04 n.s.

0.28±0.01 \(^*\)

15.50±0.50 n.s.

17.17±0.29

  1. *denotes the significance of 0.05