Skip to main content

Table 2 Independent residual network architecture

From: Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN

Layer

Hidden layer

Related parameters (filters, kernels, stride)

BLOCK1

Conv1D+BN+LeakyReLU

64

8

1

Conv1D+BN+LeakyReLU

64

5

2

Conv1D+BN

64

3

1

Conv1D+BN

64

1

1

Add

–

–

–

LeakyReLU

–

–

–

BLOCK2

Conv1D+BN+LeakyReLU

128

8

1

Conv1D+BN+LeakyReLU

128

5

2

Conv1D+BN

128

3

1

Conv1D+BN

128

1

1

Add

–

–

–

LeakyReLU

–

–

–

BLOCK3

Conv1D+BN+LeakyReLU

64

8

1

Conv1D+BN+LeakyReLU

64

5

2

Conv1D+BN

64

3

1

Add

–

–

–

LeakyReLU

–

–

–

GlobalAveragePooling1D

–

2

–

indRNN+BN

128

indRNN+BN

128

Fully connected

256

Softmax

n_class