Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Table 8 Optimal feature vectors selected by different models from bootstrap test data

From: A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery – Part II: an illustrative example

No.

BL

BQ

k NN

LR

HS

DS

ANN1

ANN2

1

O2ER

O2ER

Post-CI

O2ER

O2ER

SvO2

O2ER

O2ER

2

VCO2

DO2

O2ER

VCO2

VCO2

Card-ID

Card-ID

VO2

3

Card-ID

Card-ID

Card-ID

Card-ID

Card-ID

DO2

VO2

Card-ID

4

PVD

 

PVD

PVD

PVD

O2ER

PVD

PVD

5

TBU

 

TBU

TBU

TBU

EM

TBU

Gly

6

EM

  

EM

EM

BSA

Pre-CI

Gender

7

SAP

  

SAP

SAP

AD

EM

MVR

8

SaO2

  

Pre-CI

Pre-CI

CHF

WBC

Cr

9

   

WBC

WBC

MVR

Age

AVO2

10

   

SaO2

SaO2

MR

SaO2

Arrhy

11

   

PvO2

PvO2

PVD

AD

 

12

   

AD

AD

Diab

P/F

 

13

   

PaO2

PaO2

VCO2

PVS

 

14

   

Cr

Cr

CABG-C

  

15

     

PAH

  

16

     

IABP

  
  1. BL, Bayes linear model; BQ, Bayes quadratic model; k NN, k-nearest neighbour model; LR, logistic regression model; HS, Higgins score system; DS, direct score system; ANN1, one-layer artificial neural network; ANN2, two-layer artificial neural network. Predictor variable abbreviations are indicated in Tables 1-6.